范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時(shí)候需要注意什么呢?有哪些格式需要注意呢?接下來(lái)小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來(lái)看一看吧。
八年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)提綱篇一
2、平行四邊形、菱形、矩形、正方形、等腰梯形的定義、性質(zhì)、判別:
(1)平行四邊形:兩組對(duì)邊分別平行的四邊形叫做平行四邊形。平行四邊形的對(duì)邊平行且相等;對(duì)角相等,鄰角互補(bǔ);對(duì)角線互相平分。兩條對(duì)角線互相平分的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形;兩組對(duì)邊分別相等的四邊形是平行四邊形;兩組對(duì)角分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形。
(資料圖片僅供參考)
(2)菱形:一組鄰邊相等的平行四邊形叫做菱形。菱形的四條邊都相等;對(duì)角線互相垂直平分,每一條對(duì)角線平分一組對(duì)角。四條邊都相等的四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相平分且垂直的四邊形是菱形。菱形的面積等于兩條對(duì)角線乘積的一半(面積計(jì)算,即s菱形=l1_l2/2)。
(3)矩形:有一個(gè)內(nèi)角是直角的平行四邊形叫做矩形。矩形的對(duì)角線相等;四個(gè)角都是直角。對(duì)角線相等的平行四邊形是矩形;有一個(gè)角是直角的平行四邊形是矩形。直角三角形斜邊上的中線等于斜邊長(zhǎng)的一半;在直角三角形中30°所對(duì)的直角邊是斜邊的一半。
(4)正方形:一組鄰邊相等的矩形叫做正方形。正方形具有平行四邊形、菱形、矩形的一切性質(zhì)。
(5)等腰梯形同一底上的兩個(gè)內(nèi)角相等,對(duì)角線相等。同一底上的兩個(gè)內(nèi)角相等的梯形是等腰梯形;對(duì)角線相等的梯形是等腰梯形;對(duì)角互補(bǔ)的梯形是等腰梯形。
(6)三角形中位線:連接三角形相連兩邊重點(diǎn)的線段。性質(zhì):平行且等于第三邊的一半
3、多邊形的內(nèi)角和公式:(n-2)_180°;多邊形的外角和都等于。
4、中心對(duì)稱圖形:在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。
八年級(jí)下冊(cè)數(shù)學(xué)復(fù)習(xí)提綱篇二
1、一次函數(shù)
我們稱數(shù)值變化的量為變量(variable)。
有些量的數(shù)值是始終不變的,我們稱它們?yōu)槌A?constant)。
在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們說(shuō)x是自變量(independent variable),y是x的函數(shù)(function)。
如果當(dāng)x=a時(shí)y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。
形如y=kx(k是常數(shù),k≠0)的函數(shù),叫做正比例函數(shù)(proportional function),其中k叫做比例系數(shù)。
形如y=kx+b(k,b是常數(shù),k≠0)的函數(shù),叫做一次函數(shù)(linear function)。正比例函數(shù)是一種特殊的一次函數(shù)。
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
每個(gè)二元一次方程組都對(duì)應(yīng)兩個(gè)一次函數(shù),于是也對(duì)應(yīng)兩條直線。從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。
2、數(shù)據(jù)的描述
我們稱落在不同小組中的數(shù)據(jù)個(gè)數(shù)為該組的頻數(shù)(frequency),頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。
常見的統(tǒng)計(jì)圖:條形圖(bar graph)(復(fù)合條形圖)、扇形圖(pie chart)、折線圖、直方圖(histogram)。
條形圖:描述各組數(shù)據(jù)的個(gè)數(shù)。
復(fù)合條形圖:不僅可以看出數(shù)據(jù)的情況,而且還可以對(duì)它們進(jìn)行比較。
扇形圖:描述各組頻數(shù)的大小在總數(shù)中所占的百分比。
折線圖:描述數(shù)據(jù)的變化趨勢(shì)。
直方圖:能夠顯示各組頻數(shù)分布的情況;易于顯示各組之間頻數(shù)的差別。
在頻數(shù)分布(frequency distribution)表中:我們把分成組的個(gè)數(shù)稱為組數(shù),每一組兩個(gè)端點(diǎn)的差稱為組距。
求出各個(gè)小組兩個(gè)端點(diǎn)的平均數(shù),這些平均數(shù)稱為組中值。
3、全等三角形
能夠完全重合的兩個(gè)圖形叫做全等形(congruent figures)。
能夠完全重合的兩個(gè)三角形叫做全等三角形(congruent triangles)。
全等三角形的性質(zhì):全等三角形對(duì)應(yīng)邊相等;全等三角形對(duì)應(yīng)角相等。
全等三角形全等的條件:三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(sss)
兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等。(sas)
兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(asa)
兩個(gè)角和其中一個(gè)角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(aas)
角平分線的性質(zhì):角平分線上的點(diǎn)到角的兩邊的距離相等。
到角兩邊的距離相等的點(diǎn)在角的平分線上。
4、軸對(duì)稱
經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線(perpendicular bisector)。
軸對(duì)稱圖形的對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連接線段的垂直平分線。
線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。
由一個(gè)平面圖形得到它的軸對(duì)稱圖形叫做軸對(duì)稱變換。