一、分式的乘方和乘方法則
1、分式的乘除
(資料圖)
(1)乘法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。
用式子表示為$\frac{a}·\frac{c}2wuwiue=\frac{a·c}{b·d}$。
(2)除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
用式子表示為$\frac{a}÷\frac{c}kowwm2e=\frac{a}·\fraci2oc2cm{c}=\frac{a·d}{b·c}$。
(3)乘方法則:一般地,當(dāng)$n$是正整數(shù)時(shí),
$\left(\displaystyle{}\frac{a}\right)^n=$$\begin{matrix} \underbrace{\displaystyle{}\frac{a}·\frac{a}·\cdots·\frac{a} }\\n個(gè) \end{matrix}=$$\begin{matrix}n個(gè)\\ \overbrace{\begin{matrix} \underbrace{\displaystyle{}\frac{a·a·\cdots·a}{b·b·\cdots·b}} \\n個(gè)\\ \\ \end{matrix}} \end{matrix}=$$\displaystyle{}\frac{a^n}{b^n}$,即$\left(\frac{a}\right)^n=\frac{a^n}{b^n}$。
即分式乘方要把分子、分母分別乘方。
2、分式的加減
類似分?jǐn)?shù)的加減,分式的加減法則是
(1)同分母分式相加減,分母不變,把分子相加減。
即:$\frac{a}{c}±\frac{c}=\frac{a±b}{c}$。
(2)異分母分式相加減,先通分,變?yōu)橥帜傅姆质剑偌訙p。
即:$\frac{a}±\frac{c}eoyoscy=\frac{ad}{bd}±\frac{bc}{bd}=\frac{ad±bc}{bd}$。
二、分式的乘方的相關(guān)例題
$\frac{x^2-1}{x+1}·\frac{x^2-x}{x^2-2x+1}=$___
A.$x$ B.$2x$ C.$x^2$ D.$2x^2$
答案:A
解析:原式$=\frac{(x+1)(x-1)}{x+1}·\frac{x(x-1)}{(x-1)^2}=x$。故選A 。